Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner.
نویسندگان
چکیده
Phytoene synthase from the bacterium Erwinia uredovora (crtB) has been overexpressed in tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig). Fruit-specific expression was achieved by using the tomato polygalacturonase promoter, and the CRTB protein was targeted to the chromoplast by the tomato phytoene synthase-1 transit sequence. Total fruit carotenoids of primary transformants (T(0)) were 2-4-fold higher than the controls, whereas phytoene, lycopene, beta-carotene, and lutein levels were increased 2.4-, 1.8-, and 2.2-fold, respectively. The biosynthetically related isoprenoids, tocopherols plastoquinone and ubiquinone, were unaffected by changes in carotenoid levels. The progeny (T(1) and T(2) generations) inherited both the transgene and phenotype. Determination of enzyme activity and Western blot analysis revealed that the CRTB protein was plastid-located and catalytically active, with 5-10-fold elevations in total phytoene synthase activity. Metabolic control analysis suggests that the presence of an additional phytoene synthase reduces the regulatory effect of this step over the carotenoid pathway. The activities of other enzymes in the pathway (isopentenyl diphosphate isomerase, geranylgeranyl diphosphate synthase, and incorporation of isopentenyl diphosphate into phytoene) were not significantly altered by the presence of the bacterial phytoene synthase.
منابع مشابه
Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase.
Polyamines are involved in crucial plant physiological events, but their roles in fruit development remain unclear. We generated transgenic tomato plants that show a 1.5- to 2-fold increase in polyamine content by over-expressing the spermidine synthase gene, which encodes a key enzyme for polyamine biosynthesis. Pericarp-columella and placental tissue from transgenic tomato fruits were subject...
متن کاملAtPDS overexpression in tomato: exposing unique patterns of carotenoid self‐regulation and an alternative strategy for the enhancement of fruit carotenoid content
The regulation of plant carotenogenesis is an active research area for both biological discovery and practical implementation. In tomato (Solanum lycopersicum), we demonstrate additional bottlenecks exist in the poly-cis-transformation of phytoene to lycopene in the context of ripening-induced PSY1 expression and activity and reveal phytoene desaturase (PDS), as a target for manipulation toward...
متن کاملManipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism.
In tomato (Solanum lycopersicum), phytoene synthase-1 (PSY-1) is the key biosynthetic enzyme responsible for the synthesis of fruit carotenoids. To further our understanding of carotenoid formation in tomato fruit, we characterized the effect of constitutive expression of an additional tomato Psy-1 gene product. A quantitative data set defining levels of carotenoid/isoprenoid gene expression, e...
متن کاملA visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation.
Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expre...
متن کاملRegulation of carotenoid biosynthesis during tomato development.
Phytoene synthase (Psy) and phytoene desaturase (Pds) are the first dedicated enzymes of the plant carotenoid biosynthesis pathway. We report here the organ-specific and temporal expression of PDS and PSY in tomato plants. Light increases the carotenoid content of seedlings but has little effect on PDS and PSY expression. Expression of both genes is induced in seedlings of the phytoene-accumula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 2 شماره
صفحات -
تاریخ انتشار 2002